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ABSTRACT Alzheimer’s disease (AD) is a neurodegenerative condition that affects the central nervous
system and represents 60% to 70% of all dementia cases. Due to an increased aging population, the number
of patients diagnosed with AD is expected to exceed 131 million worldwide by 2050. The disease is
characterized by various clinical symptoms and pathological features that define three main sequential
decline stages, namely, early/mild, intermediate/moderate and late/severe stages. Although it is considered
irreversible, early diagnosis of AD is highly desirable to help preserve cognitive function. However, early
diagnosis is difficult due to different factors, including the patient-specific development of AD. The main
contribution of the proposed work is to present a personalized (i.e., local/brain regional) computer-aided
diagnosis (CAD) system for early diagnosis of AD from two perspectives, functional and structural to
assist diagnosis. In other words, the proposed system uniquely yields local/regional diagnosis by combining
11C PiB positron emission tomography (11C PiB PET), which provides functional diagnosis, with structural
magnetic resonance imaging (sMRI), which provides structural diagnosis. To the best of our knowledge, this
is the first work to combine sMRI and the 11C PiB PET for local/regional early diagnosis of AD. The system
processes the two modalities through a number of steps: pre-processing, brain labeling (parcellation), feature
extraction, and diagnosis. A local/regional diagnosis is presented for each modality separately, followed
by the final global diagnosis obtained by integrating the results from the two modalities. Evaluation of
the proposed system shows average results of 97.5%, 100%, and 96.77% for accuracy, specificity, and
sensitivity, respectively. With further development, it is envisioned that this system could contribute to the
early diagnosis of AD in the clinical setting.

INDEX TERMS Alzheimer’s disease, personalized diagnosis, MCI, 11C PiB PET, sMRI.

I. INTRODUCTION
Dementia is a major problem challenging public health.
Rather than being a single disease, dementia is defined
as a symptom of different conditions that disrupt brain
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functionality (e.g., memory, language, and reasoning) [1].
Statistically, more than 44 million people around the world
have dementia. By 2050, this number is expected to exceed
131 million [2]. The conditions and disorders related to
dementia include Alzheimer’s disease (AD), which repre-
sents sixty to seventy percent of all dementia cases in the
elderly. AD is considered as one of the most well-known
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neurodegenerative disorders that affect the central nervous
system (CNS) [3]. Relying on the findings of the World
Health Organization (WHO), the estimated increase of AD by
2050 in Asian, African, American, and European countries is
226%, 345%, 248%, and 90%, respectively [4].

Throughout its progression, AD evinces various clinical
symptoms in addition to different pathological features.
These symptoms classify AD into three sequential decline
stages: early (mild), followed by intermediate (moderate),
and ending with late (severe) [5]. Although the underlying
process of AD is irreversible, early diagnosis in the early mild
cognitive impairment (MCI) stage can provide a number of
benefits [6]: (i) finding new therapeutic strategies to puta-
tively modify the disease’s effects and applying them most
effectively at an early stage; (ii) preserving cognitive func-
tions by slowing the disease’s symptoms; and (iii) significant
cost savings for both governments and patients in short as
well as long-term care. Early diagnosis in the USA could save
$7–$7.9 trillion in health and long-term care costs). However,
early diagnosis remains a challenge. Reasons include the
variable effect of the disease among its sufferers in addition to
proper detection of pathological features 10–15 years before
the appearance of the clinical symptoms [5].

Various tests are used for the purpose of assisting the diag-
nosis process of AD, including detection of brain biomarkers.
Jack et al. [7] investigated the role of different types of brain
biomarkers during the progression of the disease. The study
showed that positron emission tomography (PET) amyloid
imaging can reveal the earliest pathological features (i.e.,
amyloid beta (Aβ) deposits). Also, structural magnetic res-
onance imaging (sMRI) can uncover structural abnormalities
throughout the stages of the disease. However, clinical imple-
mentation of PET amyloid imaging requires careful clinical
interpretation, due to the possibility of misdiagnosis that
can occur because of the similarity between AD-related Aβ
abnormalities and other elevated Aβ levels in normal elderly
subjects. The carbon-11-labeled Pittsburgh compound B
(11C PiB) tracer has been of considerable assistance in
AD studies [8]. PiB radiotracer is a fluorescent analog of
thioflavin T that aids in visualizing the prominent patholog-
ical features of AD and consequently helps to investigate
the deterioration during the disease’s stages [9]. Analysis via
sMRI assists in non-invasively revealing structural changes
during the disease progression. Also, the analysis shows the
relation between both the growing risks of proceeding to AD
and the atrophies which subsequently serve to predict future
decline regarding healthy adult memory. Finally, volumet-
ric analysis of this scanning modality can reveal essential
changes to the size of brain regions, which is considered an
effective assistance to diagnosis [9].

According to the aforementioned text, this paper’s main
contribution is to propose a personalized based (brain
local/regional) computer-aided diagnosis (CAD) system of
AD at its early stage from two different perspectives, func-
tional and structural views. For this purpose, the 11CPiB-PET
and sMRI modalities were used to serve the functional and

structural diagnosis goals, respectively. Utilizing these brain
modalities was due to their prominent roles in the context of
AD, as previously mentioned. Besides the modalities roles,
to the best of the authors’ knowledge, this is the first work that
combines the sMRI and 11C PiB-PET for AD’s local/regional
early diagnosis purpose. Also, presenting the local/regional
diagnosis was to address the variable influence of AD among
the disease’s sufferers and therefore provide more assistance
during the diagnosis procedure.

II. LITERATURE REVIEW
Instead of employing a single medical imaging modality,
fusingmultiple modalities has been explored to producemore
informative results. Among the proposed attempts, the com-
bined capabilities of sMRI and PET scans were utilized to
help in the diagnosis of AD. Related studies have employed
PET tracers other than 11C PiB, such as a tracer called
2-18F fluoro-2-deoxy-d-glucose (FDG). FDG is a metabolic
substrate used with FDG-PET scans to measure glucose
metabolism across brain regions and thus aid in the pre-
diction of conversion from MCI to AD. For instance,
Zhang and Shen [10] worked with a multi-modal data
obtained from the sMRI, FDG-PET and cerebrospinal
fluid (CSF) data to propose aMulti-Modal Multi-Task (M3T)
learning. The aim of this presented learning methodology
is to predict multiple variables from the utilized data that
can be used for regression, through clinical variables, and
for classification, through categorical variables. To achieve
this goal, the presented method went through two stages,
the first is multi-task feature selection for multiple variables
from the utilized modalities, and then a multi-modal support
vector machines (SVM) that fuses the selected features for
multiple variables (regression and classification) prediction.
The output of this methodology was in the form of Mini
Mental State Examination (MMSE) as well as Alzheimer’s
Disease Assessment Scale-Cognitive Subscale (ADAS-Cog)
as the clinical variables for regression and class labels as the
categorical variables for classification. The proposed method
was used for the estimation of the scores of the MMSE and
ADAS-Cog as well as the classification labels in the normal
controls (NC) vs. AD and NC vs.MCI groups. Additionally,
it was used for the prediction of the changes in the 2-year
MMSE and ADAS-Cog as well as the classification label in
the classification task of MCI patients who converted to AD
(MCI-C) vs. those who did not (MCI-NC). For the NC vs.
MCI group they achieved an accuracy of 83.2%±1.5%, while
it was 93.3% ± 2.2% for NC vs. AD and 73.9% ± 3.8% for
MCI-C vs.MCI-NC task.

Gray et al. [11] presented a framework for multi-modality
classification using the random forest (RF) algorithm to
derive pairwise similarity measures for manifolds construc-
tion. For this purpose, sMRI, FDG-PET, CSF biomarker
measures, as well as categorical genetic information are used.
A combination of the obtained similarities from the multi-
ple modalities is then performed to generate an embedding
for feature based information encoding. Finally, this joint
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embedding is used to perform amulti-modality classification.
Evaluating the proposed framework between the healthy con-
trols and MCI subjects showed an accuracy of 75% while
it achieved 89% for the comparison between the healthy
controls and AD patients.

Kim et al. [12] presented a classification method that
utilized the integration of metabolism in FDG-PET scans
along with the volume/thickness in sMRI. To achieve this
multi-modal data integration, the proposed classification
method used an automatic technique for the whole-brain
analysis in addition to a graph-based semi-supervised learn-
ing (SSL) method. The comparison against a SVM classi-
fier revealed superior results, especially with the volume/
thickness measures. Additionally, values of the regions of
interest (ROIs) that were extracted from the temporal lobe,
hippocampus, and amygdala revealed that regional atro-
phy of the brain initially and extensively occurred in both
the entorhinal cortex and hippocampus before spreading
throughout the neocortex.

Jie et al. [13] utilized the multi-modality concept to
improve the classification accuracy by presenting a manifold
regularized Multi-Task Feature Selection (M2TFS) model
based onMRI as well as PET data. For this purpose, the group
lasso and Laplacian regularizers were applied. The group
lasso regularizer was used for selecting a small number of
features among the joint modalities, while the Laplacian
regularizer was employed for the preservation of all the data,
obtained from each modality, related to geometric distribu-
tion information. The proposed model was evaluated under
supervised and semi-supervised learning methods. After
supervised learning, the model had an accuracy of 95.03%
for classification of AD vs. unimpaired NC, 79.27% for
MCI vs. NC, and 68.94% for MCI-C vs. MCI-NC. In the
semi-supervised run, the geometric distribution of the data
yielded better discriminant feature selection. This observa-
tion was verified through the consistent improvement in the
classification accuracy with the unlabeled samples in all three
classification tasks.

Suk et al. [14] proposed a feature representation and sys-
tem combining sMRI and FDG-PET scans to enhance the
performance of AD/MCI diagnosis. Self-taught deep learning
was used for this purpose, leading to efficient integration
of complementary information obtained from MRI and PET
scans during representation of the feature. Quantitatively,
better results have been presented through the proposed sys-
tem than the related method [15], [16]. The system showed
the ability to visually reveal complex latent patterns, hidden
in both modalities, in a hierarchical manner.

Lazli et al. [17] proposed a CAD system that consisted of a
clustering stage followed by a classification stage. The aim of
the clustering stage was to assess the white and gray matter
as well as the cerebrospinal fluid volumes from noisy MRI
and PET scans. For this purpose, fuzzy c-means was used
followed by possibilistic c-means algorithm and ending up
with the segmentation to delimit the tissue volumes of the
brain. After the clustering process, the classification process

took place using SVM. Comparing the proposed system with
the related approaches showed better results of the proposed
work.

Mattsson et al. [18], addressed the diagnosis prediction
task of AD through constructing least absolute shrinkage
as well as selection operator with the 18F-AV-1451 (tau)
PET and the regional cortical thickness in addition to the
subcortical volumes from the MRIs of the utilized scans. The
evaluation of the proposed work implied that utilizing both
modalities helped in partly capturing unique information that
are relevant for clinical AD’s reorientation.

Hao et al. [19] assisted in AD analysis through propos-
ing a multi-modal method for feature selection with con-
sistent metric constraint. First, the random forest strategy
was utilized for each modality individually, VBM-MRI or
FDG-PET, to calculate the similarity. Then, both regulariza-
tion terms of the group sparsity and sample similarity con-
straint were utilized for objective function constraining from
multiple modalities. Finally, the selected features obtained
from different modalities were fused using multi-kernel SVM
for final classification task. Evaluating the proposed system
showed promising results.

Deep learning was employed by Li et al. [20] for prediction
of missing patterns in PET scans by utilizing sMRIs. Three
aspects were used to evaluate this system: (a) the prediction
ability of the PET scans, (b) the accuracy of the classification
against other methods, and (c) the effect on the accuracy
of the combined features obtained from sMRI and PET
scans. The system could achieve the prediction goals and
attain better comparison results when testing sMRI, true
and predicted PET, and MRI + PET scans. In particular,
the feature combination of sMRI and PET scans showed
improved classification accuracy. Liu et al. [21] also relied on
deep learning to construct a CAD system composed of sparse
stacked autoencoder (SAE) for input data representation and
softmax regression layer for classification. The system was
evaluated relative to the SVM classifier in two applications:
binary classification (e.g., AD vs. NC or MCI vs. NC) and
multiclass classification (i.e., NC, MCI-C, MCI-NC, and
AD). In binary classification, the system achieved higher
sensitivity in both cases and better overall classification accu-
racy of AD vs. NC. In multiclass classification, the system
outperformed SVM in all classes except MCI-NC, where
SVM mislabeled fewer cases.

Also, Suk and Shen [22] employed deep learning to pro-
pose their classification system that uses techniques of the
automatic whole-brain ROI as well as Graph-based SSL
method for multimodal integration of imaging data. For this
purpose, the FDG and Florbetapir based PET scans where
utilized along with the voxel-based morphometry (VBM) and
FreeSurfer V5 data from sMRI. Evaluating the data showed
best performance when integrating FDG and FreeSurfer data.
Regarding the classification results, comparing the proposed
graph-based SSL method and the SVM classifier showed,
in general, better results of the proposed method except with
Florbetapir data.
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Despite the existence of various researches to serve the
early diagnosis of AD, these studies yield a global diagnosis
of AD and do not utilize 11C PiB tracer when working with
both sMRI and PET scans. Although the utilized PET based
tracers in the previous work showed good results, 11C PiB
tracer has been found to help in revealing the earliest signs of
the disease. This supports this tracer’s role as an identifier in
the early diagnosis stage of the disease [7]. Also, although
the global diagnosis is an essential result in this context,
proposing local/regional diagnosis could be more helpful to
address the variability of the disease among patients which is
a vital obstacle in front of the researchers in this field. This
paper proposes a personalized based functional/structural
CAD system to help diagnose AD at the earlyMCI stage. The
novelty of this work is to present a local/regional diagnosis
of AD from two different perspectives, a functional view
using 11C PiB-PET as well as a structural view using sMRI.
These modalities are chosen due to their respective roles in
early identification of the disease and related structural brain
atrophy. Additionally, the proposed CAD system in this pilot
study presents the capability for a final global diagnosis to
provide an additional level of information.

III. MATERIALS, METHODS AND VALIDATION STRATEGY
A. MATERIALS
To evaluate the proposed system, we utilized a dataset from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) of subjects with both sMRI
and 11C PiB-PET scans. The initial launch of ADNI was
in 2003 in the form of a public-private partnership under
the leadership of Principal Investigator Michael W. Weiner,
MD. The main goal of ADNI was to examine whether the
serial sMRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of MCI and early AD. For more information
about the protocols as well as the methods, the reader is
referred to [23]. Data were obtained in accordance with the
ADNI Data Use Agreement and with approval from the Uni-
versity of Louisville IRB (IRB protocol 19.0910). Addition-
ally, ADNI data collection protocols were reviewed through
the IRB at the Health System of Duke University and at each
site. Prior to the collection of the data, all the subjects, as well
as their legal representatives when appropriate, gave written
informed consent [24].

In this study, a total of 81 sMRI and 11C PiB-PET scans
of 19 NC and 62 MCI subjects were utilized. It is noted that
the utilized dataset was chosen since we intended to include
only the subjects with both the sMRI and 11C PiB-PET
scans. Besides, it is noted that the scans that were initially
pre-processed through ADNI were utilized in the proposed
work. Despite the ADNI based initial pre-processing opera-
tions and to serve the targeted, personalized diagnosis goal,
additional pre-processing steps were performed on these
scans. The main aim of these extra pre-processing steps is
to standardize the scans to a labeling atlas template to serve
the brain regions’ labeling task.

For the 11C PiB-PET scans, the scans were co-registered,
averaged, spatially oriented, intensity normalized, as well
as smoothed through ADNI [25]. The ADNI based pre-
processing operations on sMRI scans were in the form of
multiplanar reconstruction (MPR) and a number of correction
steps. These corrections start with gradwarping, an image-
based system-specific correction of the geometry distor-
tion that occurs because of the gradient non-linearity. Then,
B1 calibration scans are utilized in a B1 non-uniformity to
correct the intensity non-uniformity of the images. In this
procedure of correction, a uniform sensitivity of the body coil
is assumed. However, a poor signal-to-noise-ratio is showed
when scanning the images by a body coil. Therefore, obtain-
ing a head coil-based intensity inhomogeneity profile can be
performed by dividing the smoothed version of the body coil
image by the surface coil’s smoothed one. The B1-corrected
version of the head coil image can be attained via the multi-
plication of the uncorrected image and the estimated intensity
profile [26]. Finally, the N3 histogram peak algorithm of
sharpening is applied to reduce the images’ intensity non-
uniformity [27]. On anatomy, for the dependence elimination
of the field estimate, an iterative approach is utilized for
the estimation of the multiplicative bias field as well as the
distribution of the true intensities of the tissue. Applying
N3 on the MR data showed substantial improvement in the
accuracy of the techniques used for the anatomical analysis
such as tissue classification, cortical surface extraction, and
registration [26].

Regarding the gold standard of diagnosis, the ground truth
from ADNI, based on ADNI’s classification criteria of AD
related groups, was utilized. According to ADNI, the NC
group was composed of subjects without any indications of
having depression, cognition related impairments, or demen-
tia. Patients in the MCI group were reported, by themselves,
through an informant, or by a clinician, to suffer from mem-
ory concerns. These subjects did not show significant levels
of impairment in other cognition domains or any signs of
dementia. In order to determine the normality/abnormality
of the participants’ memory function, a part of the
WechslerMemory Scale (WMS) neuropsychological test was
performed with respect to the participants’ level of education
as presented in Table 1. We focused on the MCI group with
the goal to diagnose NC and MCI subjects regardless of
whether the MCI subjects proceed to the AD stage, progres-
sive MCI (pMCI), or remain as stable MCI (sMCI). Also,
despite the ability of the 11C PiB-PET scans to diagnose the

TABLE 1. Demographic data of the NC and MCI groups based scans that
were used to evaluate the proposed framework.

VOLUME 8, 2020 218985



F. E.-Z. A. El-Gamal et al.: Personalized CAD for MCI in Alzheimer’s Disease Based on sMRI and 11C PiB-PET Analysis

FIGURE 1. Proposed personalized based functional/structural CAD system for early diagnosis of Alzheimer’s Disease.

MCI subjects, here we utilized the sMRI along with PET
scans in order to present the personalized diagnosis from two
viewpoints for clinical evaluation.

B. METHODS
This paper builds a local/regional structural/functional com-
puter based diagnostic system that aids in the personalized
diagnosis process at the MCI stage of AD, the early stage
of the disease. Thus, the proposed framework is mainly
partitioned into two analysis stages, as presented in Fig. 1.
First, the 11C PiB-PET and sMRI scans are analyzed sepa-
rately, and a local/regional diagnosis of the disease is obtained
from each imagingmodality for each anatomical brain region.
Second, a final global diagnosis is produced by integrating the
results from the two modalities. The proposed CAD system
is described in detail in the following subsections.

1) 11C PiB-PET AND sMRI SCANS PREPROCESSING
In addition to the ADNI’s preprocessing operation on the
utilized scans and in order to assess local/regional diagnosis,
the scans need to be standardized first to the labeling atlas
template’s space, the Montreal Neurological Institute (MNI)
space. This standardization yields anatomical brain label-
ing of the scans that serves the local/regional diagnosis.
Therefore, the scans are processed in a number of steps:
data re-orientation, co-registration, spatial normalization, and
re-slicing (Algorithm 1).

Starting with the sMRI scans, before performing the
standardization step, the scans undergo a skull stripping
operation. To achieve this task, the scans are convolved with

their binary brain masks obtained from the ADNI. After
performing this step, the sMRI scans, as well as the 11C
PiB-PET scans, are ready to be standardized. Starting with
re-orienting the scans (i.e., sMRI and 11C PiB-PET based
scans), this operation is done with respect to the imaginary
line between the anterior and posterior commissures (AC-PC
line), and matching the orientation of the scan to that of the
atlas template. Please note that re-orientation here to AC-PC
line is differ than that of ADNI that re-orients the scans to a
standard image grid that subsequently reorients the AC of the
scan to be parallel to the AC-PC line.

Then, a least squares approach is used to calculate the six-
degree-of-freedom, rigid body spatial transformation [28] to
align the brain as closely as possible with the atlas. For this
purpose: first, pick an sMRI scan (reference) and re-orient
it to the line of AC-PC, and second, re-orient as well as
re-align the target scans (i.e., the corresponding 11C PiB-PET
scan, and consequently the remaining 11C PiB-PET scans,
in addition to all the remaining sMRI scans) to the refer-
ence scan. Note that the second step is achieved through the
composition of the re-orientation and rigid-body transforma-
tions. Mis-alignment is gauged with the mutual information
based cost function and 7th degree B-spline interpolation
method [29]. Note that the idea behind the cost function is
to compare the registered image in order to measure their
similarity. Among the cost function’s methods there is the
mutual information that addresses the structural similarity
measurement between gray-scale images pairs in addition
to perform cross-modality based registration between the
images [30]. Also note that any of the sMRI scans can be
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Algorithm 1The Standardization Steps of Both 11CPiB-PET
and sMRI Scans

Input: Original 11C PiB-PET, and sMRI scans with their
corresponding masks.
Output: Standardized/atlas-matched scans.
Steps:
1) Strip the skull of the sMRI scans through convolving

themwith their masks obtained fromADNI database.
2) Re-orient both modalities to the AC-PC line through:

a) Pick and re-orient one of the sMRI scans
(reference scan) to the AC-PC line.

b) Use the resulting re-oriented scan to re-orient the
equivalent 11C PiB-PET scan (and consequently
the remaining sMRI scans).

c) Apply the resulting re-orientation matrix of the
PET scan to the remaining 11C PiB-PET scans.

d) Apply the rigid body transformation (i.e., transla-
tion, rotation, and mutual information cost func-
tion) to co-register both the sMRI and the 11C
PiB-PET modalities.

3) Spatially normalize as well as re-slice the scans to
match the space of the atlas template (MNI space).

4) De-noise the 11C PiB-PET scans using Algorithm 2.

used as a reference scan as all the scans in ADNI database
have broadly the same spatial orientation. Finally, note that
one of the sMRI scans was used as a reference due to the high
resolution of the sMRI as compared with the 11C PiB-PET
scans.

Then, spatial normalization of the scans to the atlas tem-
plate, using the algorithm of Ashburner and Friston [31], are
applied to the resulting re-oriented/re-aligned scans using full
affine transformation to translate, shear, rotate, and scale the
scans, in addition to apply the nonlinear deformations in order
to achieve a precise outcome. After data standardization,
the 11C PiB-PET scans went through a de-noising operation
to retain the details of the image while removing any artifact
that could result during the image acquisition process or/and
transmission [32]. For this purpose, the wavelet de-noising
was used due to its good localization characteristic [33]. The
wavelet de-noising steps applied in the proposed work are
presented in Algorithm 2. Using symlet8 mother wavelet was
due to its role as a compact support mother wavelet of least
asymmetry and the highest number of the support width’s
vanishing moments. These aspects can consequently help in
locally preserving the spatial aspects of the image [34].

2) BRAIN LABELING
After scan standardization, the next step is to label the brain
regions using a detailed brain parcellation atlas as performed
in [36]–[38]. The Automated Anatomical Labeling (AAL)
atlas was selected for its fine level of detail. It parcellates
the brain into 116 anatomical regions defined in part by
the pattern of sulci in the MNI standard single subject’s

Algorithm 2 The Steps of the Wavelet De-Noising Method

Input: Standardized/atlas-matched 11C PiB-PET scans.
Output: De-noised standardized/atlas-matched 11C PiB-
PET scans.
Steps:
1) Select the mother wavelet, number of levels, and

compute the forward wavelet transform of the
inputted scans. In our work, the ‘symlet8’ mother
wavelet has been selected with a single level of
decomposition due to the low resolution of the 11C
PiB-PET scans.

2) Estimate the threshold and choose the shrinkage rule
of how to apply the threshold in the detail coeffi-
cients using soft thresholding, where the coefficients
under the threshold are deleted and the left are scaled,
or hard thresholding, where the coefficients under
the threshold are deleted and the left are remained
unchanged. In our work, the soft thresholding was
selected where the Stein’s unbiased risk estimate rule
was applied for selecting the threshold according
to [35].

3) Use the modified coefficients to apply the inverse
wavelet transform.

brain, including 90 cerebral regions in both hemispheres and
26 cerebellar regions (nine in each cerebellar hemisphere and
eight in the vermis) [39].

3) FEATURE EXTRACTION
At this stage, the discriminant features were extracted from
the labeled regions taking into account the nature of both the
disease and the utilized modalities. In the case of sMRI,
the aim is to reveal characteristics of brain structure indica-
tive of AD [40], that might not be directly detected at the
MCI stage. Therefore, a number of geometric (i.e., bounding
box, perimeter, and volume) and shape (Gaussian curvature,
mean curvature, sharpness, and curvedness) features were
calculated. The bounding box aims to determine the smallest
rectangle that encloses the brain region producing a vector
that contains the coordinates of the upper-left corner and
the width of the obtained bounding box. The perimeter aims
to produce a scalar that determines the distance around the
region’s boundary by finding the distance between the adja-
cent pair of pixels that surrounds the region’s border. Here,
the bounding box and perimeter were calculated for each
slice of each region, and then the mean was calculated for
the entire region’s 3D volume. After extracting these features,
to obtain the volume as well as the shape features, a recon-
struction process of each region is performed. The marching
cubes (MC) algorithm was applied because it is known to be
the best method for isosurface extraction due to its ability
to produce high-resolution results. More details about the
reconstruction using MC algorithm can be found in [41]
whereas [42], [43] provide utilization examples of isosurface
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Algorithm 3 Extraction of the Shape Based Features From
the sMRI Scans

Input: Each labeled sMRI based anatomical brain region.
Output: shape based features (curvatures, sharpness, and
curvedness).
Procedures:
1) Use the volume lattice to define cubes (Cl) where the

cubes vertices of the cornerVl are defined through the
points (P(xi, yj, sk )) of the lattice for column xi(∀i),
yi(∀j) and slice Sk (∀n):n is the number of slices.

2) In a sequential vertex by vertex manner and through-
out the rows of the dataset, build a fecetized isosur-
face. During this, mark each Vi when it has a greater
than or equal value compared to the isovalue α and
keep the remaining vertices unmarked.

3) Define the ‘‘active" cube that is the cube where the
isosurface intersects with its edge Ej that terminated
by a marked vertex Vjm and an unmarked vertex Vju.
There are different scenarios, specifically speaking
256 scenario (28), to mark the cube since each of
the cube’s eight vertices can be either marked or
unmarked. Each of these scenarios encodes a pat-
tern for the cube-isosurface intersection. The faceti-
zation information of the intersecting isosurface can
be obtained through a prior built look-up table that
contains the intersection topologies. To estimate the
isosurface-edge intersection location I = (Ix , Iy, Is),
the linear interpolation is applied as:

I (x, y, s) = Vm(x,y,s) + ρ(Vu(x,y,s) − Vm(x,y,s))

where: ρ = α−Lm
Lu−Lm

, Lm and Lu are the scalar values
Vm as well as Vu, respectively.

4) Utilize the extracted isosurface, triangulated mesh,
to calculate the curvature based features through the
following equations:

CGaussian = λ1λ2 (1)

Cmean =
1
2
(λ1 + λ2) (2)

Sharpness = (λ1 − λ2)2 (3)

Curvedness =
√
(λ21 + λ

2
2)/2 (4)

where λ1 and λ2 are the principal curvatures,
or eigenvalues of the shape operator, estimated at
each node of the mesh.

in neuroimaging context. Algorithm 3 presents the steps of
extracting the shape features utilizing theMC algorithm [44].
Beside these shape features, the volume was calculated for
each reconstructed region as well since it is considered as a
well-known, cross-sectional quantitative metric of AD [45].
Thus, rather than relying the sMRI features on the volume
alone, the volume was utilized in conjunction with the other
aforementioned shape and geometric features to avoid bias

and to obtain more precise results through revealing as much
as possible information from the scans.

To maximize the representative information, a feature
fusion procedure, relying on the canonical correlation anal-
ysis (CCA) technique, was applied to the extracted fea-
tures [46]. CCA was chosen due to its role in addressing
the relationship between two variable sets by finding the
linear combinations that maximize the pair-wise correlations
between the sets. In this study, the CCA was utilized sequen-
tially by fusing two features at a time until arriving at the final
vector of the fused features.

For 11C PiB-PET scans, each region was analyzed with the
scale-invariant blob detection method, employing laplacian
of Gaussian (LoG) filters with automatic scale selection [47].
Blob detection aims to highlight primarily spherical struc-
tures (i.e., blobs) from the images and present them as a fea-
ture where the blob is a local minimum or maximum intensity
with a radially symmetric distribution [48]. Depending on
the blob characteristics, the extracted blobs could be used to
detect AD-related abnormalities, since AD has a high signif-
icant retention of PiB in brain regions that have increased
Aβ plaques [49]. Relying on this fact and for each region,
a vector of blobs that correspond to the local maxima will
be targeted through the LoG detector with automatic scale
selection.

4) DIAGNOSIS
After extracting regional features from the sMRI and 11C
PiB-PET scans, the features were used to construct two levels
of diagnosis, 1) local/regional diagnosis followed by 2) a
final global diagnosis. To achieve the target of the first level,
for each of the utilized modalities, separate 116 probabilistic
SVM (pSVM) were constructed for each of the labeled brain
regions. The aim of these separate pSVM was to produce a
probabilistic brain regional based diagnosis from eachmodal-
ity point of view. These probabilistic results reflect the sever-
ity of AD in each brain region separately. Then, the second
diagnosis level was constructed to classify each subject as
belonging to the NC orMCI group. For this purpose, the max-
imum of the probabilistic results from the two modalities, for
all the brain regions, were obtained and input to a standard
SVM to produce the final diagnosis of the subject. Note that
the first diagnosis level is brain regional based diagnosis
where the 116 labeled regions obtained through AAL atlas
were used to construct the separate 116 pSVM. On the other
hand, the second diagnosis level is subject based diagnosis,
where the labels of AD related stages (i.e., NC andMCI) were
used to construct the standard SVM. The idea of the proposed
diagnosis levels is presented in Figure 2.

C. VALIDATION STRATEGY
The proposed CAD system was implemented using MAT-
LAB. The preprocessing operations of data re-orientation,
co-registration, spatial normalization, and re-slicing were
performed using the SPM 12 toolbox of MATLAB [28],
whereas the brain labeling task was accomplished through
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FIGURE 2. Proposed two diagnosis levels (i.e., local followed by global diagnosis) and their relation with the inputted extracted features from the both
modalities.

the xjView toolbox [50]. Then, the region-based feature
extraction was performed. Regarding sMRI, the result of
feature extraction process produced a fused feature vector
of the geometric and shape features. While for the 11C PiB-
PET scans, the result produced a vector of the extracted
blobs. Later, two diagnosis levels were constructed to present
a local/regional based diagnosis followed by a final global
(i.e., subject based) diagnosis. In the first level, for each
of the 116 AAL atlas based brain regions in each modality
individually, a separate pSVM was utilized to produce a
probabilistic result that reflects the severity of the disease in
the region. Then, the maximum of the obtained probabilistic
results for all the regions from the both modalities were
obtained for each subject and inputted to a standard SVM
in the second level to determine the final global diagnosis of
belonging to the NC or MCI groups.

Two types of experiments were used to validate the pro-
posedwork, the classification analyses, as well as the regional
diagnosis and putative neurocircuits. In the first type, the per-
formance comparison between the proposed SVM-based sys-
tem and state-of-the-art classifiers was performed. Therefore,
two validation methods (i.e., leave-one-subject-out (LOSO)
and K-fold cross-validation, with K ∈ {2, 4, 10}) were
utilized. In general, for this purpose and after dividing the
dataset into the validation method required groups (e.g.,
10 groups for K = 10), each unique group of subjects will

be used, in a loop manner of the groups’ number, for testing.
In contrast, the remaining groups will be used to train and
fit the model on them before evaluating it on the testing
group. Then, before going to the next iteration of the loop,
the evaluation score will be retained, and the model will be
discarded. After ending the loop, the iterations’ scores will be
used to evaluate the model. Note that the utilization of several
different K was in order to check for overfitting that might
occur because of the imbalanced dataset due to the restriction
to subjects with both sMRI and 11C PiB-PET scans.

In this paper, the process goes into twomain steps. First, for
each modality, the training data will be used to train each of
the brain regions’ separate SVM models that will be applied
then on the testing data. This step is probabilistic results for
each of the 116 regions for the training groups and testing
group from both modalities perspectives. Second, the max-
imum of obtained regions’ probabilistic results, from both
modalities, will be used to train the standard SVMmodel that
will consequently be tested on the testing group’s maximum
probabilistic results regions obtained from both modalities.
The result of this step reflects the final subject-based result.
To evaluate the classification’s performance according to
thesemethods, three evaluationmetrics are utilized: accuracy,
specificity, and sensitivity. On the second type, the regional
diagnosis, and putative neurocircuits, the Pearson correlation
coefficient was used that presents a statistical measure of
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the relationship strength relationship between the two tested
groups.

IV. EXPERIMENTAL RESULTS
A. CLASSIFICATION ANALYSES
Starting with the analysis of the classification results and
before going through the comparison of the proposed work
with the state-of-the-art methods, the classification perfor-
mance, using LOSO, of each of the utilized modalities is
calculated as shown in Table 2. In addition to these results,
the table shows the results obtained after fusing the two
modalities. Please note here that the linear kernel was used
to construct each modality subsystem and accordingly the
integrated system due to its superior performance compared
to other SVM kernels.

TABLE 2. The classification performance of 11C PiB-PET scans, sMR
images, and their fusion using LOSO validation method.

Then, as mentioned above, to evaluate the diagnostic
performance, the performance of the proposed functional/
structural SVM-basedCAD systemwas compared to state-of-
the-art classifiers, namely naïve Bayes (NB), random forest
(RF), deep learning (DL), and decision tree (DT). The LOSO
andK-fold cross-validationmethodswere used to perform the
comparison task as shown in Table 3. The architecture of the
DL comparison classifier was a multi-layer feed-forward arti-
ficial neural network (ANN), which was trained with stochas-
tic gradient descent using back-propagation. It is important to
note that when constructing the applied classifiers, the param-
eters were optimized to produce final performance results
as follow: (i) for DT, the maximum depth of a tree was 2;
(ii) for RF the optimal number of trees was found to be
60 while their maximum depth was 4; (iii) for SVM, the
kernel gamma was 0.01 and the optimal complexity constant,
the misclassification tolerance, was 10.

B. REGIONAL DIAGNOSIS AND PUTATIVE
NEUROCIRCUITS
The proposed system helps to determine the disease pro-
gression in the brain regions from structural and functional
views. As shown in Fig. 4, the colormap reflects the severity
of the disease in each region separately starting from the
white color that means unaffected region to dark red which
is a fully indicative of MCI in the region and the colors’
range between these two colors to indicate the probability
between these ranges. According to these informative col-
ors, the two illustrated examples (the NC and MCI exam-
ples) show how the disease influence starts to appear in the
11C PiB-PET scans while it does not yet appear in the sMRI

TABLE 3. Comparison of the classification performance between the
proposed linear-SVM and representative state-of-the-art classifiers using
LOSO and K-fold methods.

(i.e., the orange, red and dark red colors in PET scans vs.
white or light yellow colors in MRI). These obtained results
are supported by the fact that the disease’s pathological fea-
tures start 10–15 years before the clinical symptoms. This fact
can help justify the appearance of some affected regions in
the NC that, in turn, may indicate that these regions started
to be influenced by the disease and accordingly represent an
alert to the specialists to deal with them. Besides, they are
showing the influence in the 11C PiB-PET scans, although
sMRI doesn’t show that much influence could be supported
by the findings of Jack et al. [7] study.

As mentioned previously, this study showed that the
11C PiB-PET scans represent an indicator of the early signs
of AD, the earliest pathological features of AD. In contrast,
the effect of the disease can be shown later in the sMRI. This
conclusion can also be seen in Fig. 3. As shown in Fig. 3,
a comparison of the number of normal regions in the sMRI
and 11C PiB-PET scans indicates that most of the regions in
the NC subjects in the sMRI scans are normal. In contrast,
more regions for the same subjects in the 11C PiB-PET scans
showed impairment effects. In this case, the 11C PiB-PET
scans of theseMCI subjects were more sensitive for detecting
impairment than the corresponding sMRI scans.

The results of the local diagnosis and fusion further val-
idate the proposed approach. Pearson correlations identify
17 significant regions in structuralMRI datawhich havemod-
est to high negative or positive correlates with 4–7 connected
brain regions only in MCI subjects (Table 4). Similarly,
11C PiB-PET scans identify 5 regions with moderate to very
strong correlates with 4-8 connected brain regions, again only
in MCI subjects (Table 5). Finally, at the global diagnosis

218990 VOLUME 8, 2020



F. E.-Z. A. El-Gamal et al.: Personalized CAD for MCI in Alzheimer’s Disease Based on sMRI and 11C PiB-PET Analysis

TABLE 4. Significant regions identification in MCI Subjects using Pearson correlations on the sMRI Data.

FIGURE 3. Comparison between 11C PiB-PET and sMRI scans where:
(a) compares the number of normal regions (x-axis) in the both
modalities with respect to the NC subjects (y-axis), and (b) compares the
number of affected regions (x-axis) in the two modalities with respect to
the MCI subjects (y-axis).

stage, fusion data reveals 5 regions previously implicated in
MCI and AD with moderate to high positive correlated with
4–5 connected brain regions (Table 6). As shown in Fig. 4,
the examples illustrate the variable influence of the disease
in particular brains. This approach could be used to identify
the individual neurocircuits in the personalized diagnosis/

treatment of the disease as well as in analysis studies that seek
to uncover the ambiguity that surrounds AD.

V. DISCUSSION
The shape, composition, and function of the brain, includ-
ing neocortex, subcortical structures, and cerebellum, as
measured by imaging modalities plays a crucial role in the
diagnosis of neurodegenerative diseases. Depending on imag-
ing variability and variable neuropathology during the pro-
gression of AD, a CAD system should be able to detect this
variability and discriminate between NC and MCI groups.
Additionally, a CAD system should be able to identify
impaired neurocircuits in the imaged brain which may
need further treatment even if those circuits are just mildly
affected.

Starting with each of the utilized modalities subsystems
results, Table 2 highlights the superior performance of 11C
PiB-PET scans in addressing the early signs of disease as
mentioned in Jack et al. [7]. Further, the results illustrate the
utility of sMRI, as validated with related work that achieved
an accuracy of 85% [51] or 70.19% [52]. Although the per-
formance results of the 11C PiB-PET scan and the integration
of both modalities were similar, the proposed system is still
able to present the diagnosis of the disease from both struc-
tural and functional perspectives. This capability represents
the main contribution of the proposed CAD system.

Then, a comparison of the proposed functional/structural
SVM-based CAD system was performed where the compar-
ison results are presented in Table 3. As shown in the table,
the LOSO and K-fold, with K= 2, 4, and 10, validation meth-
ods were utilized. Besides using these validation methods for
the comparison purpose, these methods helped in assuring
that there is no overfitting in the obtained results. According
to the table results, the presented functional/structural
SVM-based CAD system yields better results than the com-
pared classifiers. These results can be explained through
the power of the features to provide a linear separation
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TABLE 5. Significant regions identification in MCI subjects using pearson correlations on the 11C PiB-PET data.

TABLE 6. Significant regions identification in MCI Subjects using Pearson correlations on the fusion of 11C PiB-PET and sMRI Data.

FIGURE 4. Visualization examples of the local/regional diagnosis for an NC subject and an MCI with two rendering volumes for each subject, one for the
functional view (through the 11C PiB-PET scan) and the other for the structural view (through the sMRI scan). The severity of the disease is represented
via the colormap where these colors are reflected in each of the 116 region of the subjects’ volumes to indicate the severity of the disease in every region
from each of the utilized modalities’ point of view.

between the NC and MCI groups. This allowed the proposed
linear-SVM CAD system to succeed in providing the dis-
crimination power between the studied groups. Accordingly,
the proposed system showed superior results than the DL that
faces under-performance due to the small size of the dataset.
Due to the same dataset size, the DT was prone to overfitting
since it is considered as a high bias classifier. This fact
regarding DT can consequently explain the RF results that
could overcome the overfitting problem through constructing
a multitude of DTs [53]. Finally, the NB could provide high
performance results since it shows good performance with
small datasets and it is less influenced by overfitting.

Regarding the prior work, to the best of our knowledge,
the presented CAD system described here is the first to
present the local/regional diagnosis of AD from different
perspectives. Additionally, to the best of our knowledge, it’s

the first to combine 11C PiB-PET with sMRI scans to meet
the contributed goal. Previous studies have utilized other
PET-based data in their combined system but not 11C PiB-
PET. Kohannim et al. [54] achieved an accuracy of 75.76%
when combining sMRI data, FDG-PET, CSF biomarker,
ApoE genotype, as well as age. Zhang et al. [55] combined
sMRI, FDG-PET, and CSF biomarkers to achieve an accuracy
of 76.4%. Yu et al. [56] also combined sMRI, FDG-PET, and
CSF biomarkers to evaluate the same classification problem
and achieved an accuracy of 80%.

The proposed system with the fusion data helps to deter-
mine the diagnosis specific (MCI) brain regions from struc-
tural and functional views which fit into the early involved
neurocircuits in MCI/AD. Further the localized diagnoses
validates our approach. These brain regions, including the
calcarine gyrus (visuospatial skills), left caudate (learning,
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memory, motor, language), cerebellum (language, motor),
superior frontal gyrus (cognition, executive function), and
parahippocampal gyrus (learning, memory, visuospatial,
adaptive) have at least modest correlates with connectivity
(Tables 4–6) and behaviors affected in MCI subjects. Further
the sMRI correlates suggest a widespread early involvement
from a structural standpoint and linked to deficits in language,
emotions, learning/memory, visual spatial skills, executive
function, and adaptive behaviors (Table 4). Besides tradi-
tional MCI/AD regions, neuropathological findings of Aβ
plaques and neurofibrillary tangles in the cerebellum explains
the high retention of 11C PiB-PET in these regions during
the early stages of AD/MCI [57]. Clinically, olfactory dys-
function is considered one of the earliest signs of AD [58].
Finally the cingulum is considered one of the earliest imaging
abnormality in AD and thus could be an early neurocircuit
involved in MCI [59]. Though at an early stage of develop-
ment, clinicians could use a CAD system to identify early
diagnosis of involved MCI neurocircuits and thus consider
early personalized treatments, facilitate clinical trials among
similar affected subjects, and thereby provide a better infras-
tructure to discover curative treatments among subgroups of
AD/MCI patients.

In the end, it should be noted that proofing the concept of
the proposed work by obtaining promising evaluation results
encouraged the authors to continue the analysis process in the
future in different ways. For example, this encouraged them
to evaluate the proposed work on a bigger dataset with more
scans for both addressed groups. The results also inspired
them to assess the system on other relevant groups to the AD
research field (e.g., pMCI and sMCI). Also, it motivated them
to evaluate other AD-related modalities to complement the
ones utilized in the proposed work.

VI. CONCLUSION
Diagnosing AD at its early stage is a difficult task due to
number of reasons, including the variable manifestation of
the disease among particular subjects. The proposed study
presents a personalized functional/structural based CAD sys-
tem to help in the early diagnosis of AD, using data from two
modalities: 11C PiB-PET, to present a functional diagnosis
view, and sMRI, to present a structural perspective. Through
a number of analysis steps, the proposed system produced
two diagnosis levels. The first level was on the brain regions
basis, local/regional diagnosis, to present disease severity in
each region from each modality’s perspective. Then, integrat-
ing the maximum regional results from the two modalities,
the second diagnosis level is presented, global diagnosis,
that determines whether the subject belongs to the NC orMCI
group.

Evaluating the proposed system showed promising results
in this pilot study and establishes a proof-of-concept for the
proposed framework to address the classification problem
of NC vs. MCI. Future work will include evaluating the
system on other AD related classification problems (e.g.,
sMCI vs. pMCI, and NC vs.AD groups), as well as validation

with a bigger dataset, which could help refine the early
neurocircuits involved in MCI subjects. Additionally, other
modalities could be evaluated to complement the ones chosen
for this study, thereby refining the accuracy, sensitivity, and
specificity of localized diagnosis.
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